

Universidad de Sonora División de Ciencia Exactas y Naturales Departamento de Física Licenciatura en Física

Introducción a la teoría cuántica de campos

Eje formativo:	Especializante		
Requisitos:	Mecánica cuántica relativista		
Carácter:	Optativo		
Horas:	Teoría	Taller	Laboratorio
	3	2	0
Créditos:	08		
Servicio del:	Departamento de		
	Física		

1. Introducción

La Teoría Cuántica de Campos reúne un conjunto de ideas y herramientas que combinan tres temas fundamentales de la física moderna: la teoría cuántica, el concepto de campo y el principio de relatividad. Esta Teoría ha sido la plataforma de desarrollo de la Física de Partículas Elementales y forma parte de las herramientas esenciales en la Física Nuclear, Física Atómica, Física de Materia Condensada y Astrofísica. Este es un curso que permite al estudiante introducirse al estudio de la interacción de partículas elementales y acercarse al formalismo matemático que es utilizado para generar predicciones teóricas de lo que se ha logrado y lo que se espera observar como resultado de dichas interacciones.

2. Objetivo general

Este curso tiene como objetivo que el estudiante adquiera el dominio suficiente de la teoría de campos como para explicar: qué es un campo en un contexto clásico y en uno

cuántico, qué es la cuantización de campos y cuáles son las interacciones fundamentales de campos.

3. Objetivo específico

Al finalizar este curso, el estudiante será capaz de:

- ✓ identificar los principales elementos de la teoría clásica de campos que se requieren para pasar a una descripción cuántica de teorías de campos
- ✓ describir la cuantización canónica de los campos de Klein-Gordon y de Dirac
- ✓ analizar la dinámica de campos libres en teorías cuánticas
- ✓ analizar la dinámica de campos interactuantes en teorías cuánticas.

4. Temario

- 1. Elementos de teoría clásica de campos.
- 2. Simetrías, leyes de conservación y campos de norma.
- 3. Cuantización canónica: el campo de Klein-Gordon y el campo de Dirac.
- 4. Campos libres y campos interactuantes.

5. Estrategias didácticas

El profesor de la asignatura puede utilizar:

- Exposición del maestro.
- Resolución de problemas ejemplo.
- Trabajo grupal en el centro de cómputo.
- Exposiciones del estudiante.

6. Estrategias para la evaluación

Como parte de la evaluación del curso se puede considerar:

- Tareas consistentes en la solución de problemas.
- Reportes de lectura.
- Exámenes parciales.

7. Bibliografía

La bibliografía sugerida para este curso es la siguiente:

- 1. Ryder, L.H., *Quantum Field Theory*. 2a. Edición. Cambridge University Press. (1996).
- 2. Greiner, W., Reinhardt, J., *Field Quantization*. 1a. Edición. Springer-Verlag. (1996).
- 3. Peskin, M.E., *Introduction to Quantum Field Theory*. 1a. Edición. HarperCollins Publishers. (1996).

8. Perfil docente

El profesor que imparta esta materia deberá poseer una sólida formación en Física. Es importante que el profesor tenga experiencia docente en el nivel de licenciatura.