Universidad de Sonora Departamento de Física Práctica 5 - "Gasto o caudal"

Objetivo General:

Calcular el gasto o caudal de un fluido en movimiento.

Teoría:

Para lograr los objetivos propuestos en esta práctica, es necesario que investigues los siguientes conceptos:

- ¿Qué es el gasto o caudal de un fluido?
- ¿Cuáles son las unidades con las que se puede medir el gasto o caudal de un fluido?
- ¿Cuáles son las dos fórmulas que se usan para calcularlo?

Con la información que obtengas al contestar estas preguntas escribirás un texto, el cual irá en la sección *Introducción* del reporte (no como cuestionario, sino como texto).

Equipo y Materiales:

• Dispositivo computacional para trabajar con el simulador: **Presión del fluido y flujo PhET**, ubicado en la página:

https://phet.colorado.edu/sims/cheerpj/fluid-pressure-and-flow/latest/fluid-pressure-and-flow.html?simulation=fluid-pressure-and-flow&locale=es

• Cámara o posibilidad de tomar captura de pantalla.

Procedimiento:

Una vez abierta la imagen de simulación se verá así:

Pero no trabajaremos con esta opción, sino con la que se abre al activar la pestaña "Flujo", tal como se muestra.

Con lo que el espacio de trabajo nos queda:

Presión del fluido y flujo (1.02) Archivo Ayuda Presión Flujo Torre de a	agua				TTX) (- Danilani.	د ۱۹۱۱ ور
Caudal 5000				- (P	302 KPa	des fico	
	Puntos				C Med	idor densidad de Fluj einiciar todo	
91	ę	ę	P	ę	ę	- 7	
۲:						P	
	с С	4	_	с С	4	-	
					🛨 Densidad del F	Nido	
• itovimiento liento o kommai 🕟 🕞							

Observar que el caudal con el que se trabajará es 5000 litros/segundo

Hay que convertir este caudal a *metros cúbicos sobre segundo* y anotar ese resultado en la tabla de **Resultados y discusión.**

Para iniciar el análisis vamos a considerar 3 áreas, procediendo de la siguiente manera para cada una de ellas.

AREA 1

 Con ayuda de la regla medir el diámetro de la tubería, usando ese diámetro d₁ y anotar su valor en metros, en la tabla.

2. Usando el medidor "Speed" medir la velocidad v_1 de flujo del fluido, anotar el resultado en la tabla

3. Tomar captura de pantalla o foto para reportar.

AREA 2

- 4. Pulsar el botón "Reiniciar todo"
- 5. Usando los marcadores (arrastrándolos con el cursor, hacia arriba o abajo) para reducir o aumentar el "tamaño" del tubo, reducir el área del tubo al mínimo.
- 6. Con ayuda de la regla medir el diámetro **d**₂ y anotarlo en la tabla.
- 7. Usando el medidor "Speed" medir la velocidad v_2 , anotar el resultado en la tabla.

8. Tomar captura de pantalla o foto para reportar.

AREA 3

- 9. Pulsar el botón "Reiniciar todo"
- 10. Usando los marcadores para modificar el tamaño del tubo, aumentar el área al máximo.
- 11. De nuevo con ayuda de la regla, medir el diámetro **d**₃ y anotarlo en la tabla.
- 12. Usando el medidor "Speed" medir la velocidad v₃, anotar el resultado en la tabla.
- 13. Tomar captura de pantalla o foto para reportar.

Resultados y discusión:

Con los valores obtenidos anteriormente completa la siguiente tabla, calcula el área de sección transversal (área de la circunferencia) para cada caso y el gasto ($\mathbf{G} = \mathbf{vA}$)

Caudal: m ³ /s							
	AREA 1	AREA 2	AREA 3				
Diámetro	d ₁ =	d ₂ =	d ₃ =				
Área	A ₁ =	A ₂ =	A ₃ =				
Velocidad	<i>v</i> ₁ =	v ₂ =	v ₃ =				
Gasto (G = vA)	G =	G =	G =				

Preguntas:

- a) ¿El valor del Gasto obtenido para las tres áreas fue diferente?
- b) ¿Cómo fue el valor del Caudal comparado con los valores de Gasto de cada área?
- c) ¿Cómo fueron las velocidades en cada área, iguales o diferentes?
- d) ¿Qué velocidad fue mayor? ¿Por qué crees que ocurrió esto?
- e) ¿Qué velocidad fue menor? ¿Por qué crees que ocurrió esto?

Todas las preguntas de esta guía las responderás investigando y/o considerando los resultados obtenidos en cada experimento. Y agregarás la información contenida en ellas (como texto, NO COMO CUESTIONARIO) en las distintas secciones del reporte, puede ser en <u>Resultados y</u> <u>discusión</u> o en <u>Conclusiones.</u>